

General Overview of the BTeV Project and its Requirements

Project Components

Requirements on CO IR

- Peak Luminosity ~2x10³² cm⁻² s⁻¹
- Interoperability: Must allow for operation at CO or at BO & DO simultaneously
- Non-interference with BTeV detector
 - last quadrupole closest to collision point is 5 m further away than in CDF or DO
- Schedule: Must be ready by shutdown in middle of 2009

BTeV Collaboration

Belarussian State- D .Drobychev, A. Lobko, A. Lopatrik, R. Zouversky

UC Davis - P. Yager

Univ. of Colorado at Boulder

J. Cumalat, P. Rankin, K. Stenson

Fermi National Lab

- J. Appel, E. Barsotti, C. Brown,
- J. Butler, H. Cheung, D. Christian,
- S. Cihangir, M. Fischler,
- I. Gaines, P. Garbincius, L. Garren,
- E. Gottschalk, A. Hahn, G. Jackson,
- P. Kasper, P. Kasper, R. Kutschke,
- S. W. Kwan, P. Lebrun, P. McBride,
- J. Slaughter, M. Votava, M. Wang,
- J. Yarba

Univ. of Florida at Gainesville

P. Avery

University of Houston –

- A. Daniel, K. Lau, M. Ispiryan,
- B. W. Mayes, V. Rodriguez,
- S. Subramania, G. Xu

Illinois Institute of Technology

- R. Burnstein, D. Kaplan,
- L. Lederman, H. Rubin, C. White

Univ. of Illinois- M. Haney, D. Kim, M. Selen, V. Simatis, J. Wiss

Univ. of Insubria in Como-

P. Ratcliffe, M. Rovere

INFN - Frascati - M. Bertani, L. Benussi, S. Bianco, M. Caponero, F. Fabri, F. Felli, M. Giardoni, A. La Monaca, E. Pace, M. Pallota, A. Paolozzi

INFN - Milano - G. Alimonti, P'Dangelo, M. Dinardo, L. Edera, S. Erba, D. Lunesu, S. Magni, D. Menasce, L. Moroni, D. Pedrini, S. Sala, L. Uplegger

INFN - Pavia - G. Boca, G. Cossali, G. Liguori, F. Manfredi, M. Maghisoni, L. Ratti, V. Re, M. Santini, V. Speviali, P. Torre, G. Traversi

IHEP Protvino, Russia - A.

Derevschikov, Y. Goncharenko, V. Khodyrev, V. Kravtsov, A. Meschanin, V. Mochalov, D. Morozov, L. Nogach, P. Semenov K. Shestermanov, L. Soloviev, A. Uzunian, A. Vasiliev

University of Iowa

C. Newsom, & R. Braunger

University of Minnesota

J. Hietala, Y. Kubota, B. Lang, R. Poling, A. Smith

Nanjing Univ. (China)-

T. Y. Chen, D. Gao, S. Du, M. Qi, B. P. Zhang, Z. Xi Xang, J. W. Zhao

New Mexico State -

V. Papavassiliou

Northwestern Univ. -

J. Rosen

Ohio State University-

K. Honscheid, & H. Kagan Univ. of Pennsylvania

W. Selove

Univ. of Puerto Rico

A. Lopez, H. Mendez, J. Ramierez, W. Xiong

Univ. of Science & Tech. of China - G. Datao, L. Hao, Ge Jin, L. Tiankuan, T. Yang, & X. Q. Yu

Shandong Univ. (China)-

C. F. Feng, Yu Fu, Mao He, J. Y. Li, L. Xue, N. Zhang, & X. Y. Zhang

Southern Methodist -

T. Coan, M. Hosack

Syracuse University-

M. Artuso, C. Boulahouache,

S. Blusk, J. Butt, O.

Dorjkhaidav, J. Haynes, N.

Menaa, R. Mountain,

H. Muramatsu, R. Nandakumar,

L. Redjimi, R. Sia,

T. Skwarnicki, S. Stone, J. C.

Wang, K. Zhang

Univ. of Tennessee

T. Handler, R. Mitchell

Vanderbilt University

W. Johns, P. Sheldon,

E. Vaandering, & M. Webster

University of Virginia M.

Arenton, S. Conetti, B. Cox, A. Ledovskoy, H. Powell, M. Ronquest, D. Smith, B. Stephens, Z. Zhe

Wayne State University

G. Bonvicini, D. Cinabro,

A. Schreiner

University of Wisconsin

M. Sheaff

York University - S. Menary

Co Characteristics of hadronic b production

$$p\bar{p}\rightarrow b\bar{b}+X$$

The higher momentum b's are at larger η's

 ${f B}$ hadrons at the ${f Tevatron}$ -2.5 $\eta = -\ln(\tan\frac{\theta}{2})$ b production peaks at large angles with large bb correlation

Requirements: General

- Intimately tied to Physics Goals
- In general, within the acceptance of the spectrometer (10 - 300 mr with respect to beam) we need to:
 - > Detect charged tracks & measure their 3-momenta
 - Measure the point of origin of the charged tracks (vertices)
 - > Detect neutrals & measure their 3-momenta
 - \triangleright Reveal the identity of charged tracks (e, μ , π , K, p)
 - > Trigger & acquire the data (DAQ)
- Need to do as well as possible we want individual subsystem to even exceed their performance specs, within the budget constraints

Basics Reasons for the Requirements

- B's (& D's) are long lived, ~1.5 ps, so if they are moving with reasonable velocity they go ~3 mm before they decay. This allows us to <u>Trigger</u> on the the presence of a B decay (detached vertex).
- B's are produced in pairs pp→bb+X, and for many crucial measurements we must detect one b fully and some parts of the other: "flavor tagging"
- Physics states of great interest now are varied and contain both charged and neutrals, B_d & B_s

Summary of required measurements for CKM tests

Physics	Decay Mode	Vertex	K/π	γ det	Decay
Quantity		Trigger	sep		time σ
$\sin(2\alpha)$	$B^{o} \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{o}$	\checkmark	\checkmark	\checkmark	
$\sin(2\alpha)$	$B^o \rightarrow \pi^+ \pi^- \& B_s \rightarrow K^+ K^-$	\checkmark	\checkmark		\checkmark
$\cos(2\alpha)$	$B^{o} \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{o}$	\checkmark	\checkmark	\checkmark	
$sign(sin(2\alpha))$	$B^o \rightarrow \rho \pi \& B^o \rightarrow \pi^+ \pi^-$	\checkmark	\checkmark	\checkmark	
$\sin(\gamma)$	$B_s \rightarrow D_s K^-$	\checkmark	\checkmark		\checkmark
$\sin(\gamma)$	$B^{o} \rightarrow D^{o} K^{-}$	✓	\checkmark		
$\sin(\gamma)$	$B \rightarrow K \pi$	\checkmark	\checkmark	\checkmark	
$\sin(2\chi)$	$B_s \rightarrow J/\psi \eta', J/\psi \eta$		\checkmark	\checkmark	\checkmark
$\sin(2\beta)$	$B^o \rightarrow J/\psi K_s$				
$\cos(2\beta)$	$B^o \rightarrow J/\psi K^* \& B_s \rightarrow J/\psi \phi$		\checkmark		
X_{S}	$B_s \rightarrow D_s \pi^-$	\checkmark	\checkmark		\checkmark
$\Delta\Gamma$ for B_s	$B_s \rightarrow J/\psi \eta', K^+K^-, D_s \pi^-$	√	\checkmark	\checkmark	\checkmark

More Basic Reasons

- Many modes contain γ , π° & η , so need excellent electromagnetic calorimetery
- B_s oscillations are fast, so need excellent time resolution ~<50 fs, compared to ~1500 fs lifetime. Also very useful to reduce backgrounds in reconstructed states
- Physics Backgrounds from $\pi \Leftrightarrow K$ can be lethal
 - $\triangleright B_s \rightarrow D_s \pi^- \text{ is } 15 \times B_s \rightarrow D_s K^-$
 - \triangleright B° \rightarrow K* $\pi \rightarrow$ K $\mp \pi^{\pm} \pi^{\circ}$ is 2X B° $\rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{\circ}$
 - So excellent charged hadron identification is a must

The BTeV detector in the CO collision hall

The BTeV Detector

Fundamentals: Decay Time Resolution

- Excellent decay time resolution
 - > Reduces background
 - Allows detached vertex trigger
- The average decay distance and the uncertainty in the average decay distance are functions of B momentum:

$$\langle L \rangle = \gamma \beta c \tau_B$$

= 480 μm × p_B/m_B

Pixels

- Pixel working systems studied in beams, including "almost" final electronics
- Full mechanical design done and being tested
- Pixels are inside of beam pipe in machine vaccum - OK with accelerator provided the outgassing rate is below specified limits (review document linked to Review web page)

Physics Simulations Tools

- Full GEANT has multiple scattering, bremsstrahlung, pair conversions, hadronic interactions and decays in flight; smears hits and refits the tracks using "Kalman Filter." No pattern recognition (except for trigger). However, we do not expect large pattern recognition problems
 - This track density is 10x higher than what is expected in BTeV!
- ◆ Detailed studies of efficiency and rejection for up to an average of six interactions/crossing

Pixel Trigger Overview

◆ Idea: find primary vertices & detached tracks from b or c

- Pixel hits from 3 stations are sent to an FPGA tracker that matches "interior" and "exterior track hits
 - Interior and exterior triplets are sent to a farm of DSPs to complete the pattern recognition:
 - interior/exterior triplet matcher
 - fake-track removal

Trigger Performance

■ For a requirement of at least 2 tracks detached by more than 40, we trigger on only 1% of the beam crossings and achieve the following efficiencies for these states at Level I:

State	efficiency(%)	state effi	ciency(%)
$\mathrm{B} o \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$	55	$B^o \longrightarrow K^+\pi^-$	54
$B_s \rightarrow D_s K$	70	$\mathrm{B^o} \longrightarrow \mathrm{J/\psi} \ \mathrm{K_s}$	50
$B^- \rightarrow D^0 K^-$	60	$B_s \longrightarrow J/\psi K^*$	69
$B^- \rightarrow K_s \pi^-$	40	$B^o \longrightarrow K^* \gamma$	40

Tracking

 Straws - protoype awaiting tests, uses Atlas design as basis

 Silicon Strips: simple single sided design, mechanics done.

RICH: Two Systems

- Gas + Mirror + MAPMT to identify b decay products
- Liquid + PMT's to help with flavor tagging of b's (p/K separation for p < 9 GeV/c)
- Excellent particle id. distinguishes BTeV from "Central pp Detectors"

MAPMT vs. HPD

- A good situation: two viable technologies:
 - Hamamatusu has now produced an MultiAnodePMT with small borders
 - We have developed with DEP a 163 channel HPD & electronics that yields ~identical performance
- Currently
 - > MAPMT's significantly cheaper due to currency exchange changes
 - > MAPMT's easier to operate
- Baseline is now MAPMT's, but choice can be changed at time of construction if costs change

EM calorimetry using PbWO₄ Crystals

- GEANT simulation of $B^o \rightarrow K^* \gamma$, for BTeV & CLEO
- Isolation & shower shape cuts on both

Based 9.9x10⁶ bkgrnd events

$$B^{\circ} \rightarrow \rho^{+} \pi^{-} S/B = 4.1$$

$$B^{\circ}\rightarrow \rho^{\circ}\pi^{\circ}$$
 S/B = 0.3

Muon System

- Used to check detached vertex trigger by having an independent dimuon trigger
- Also used for μ id
- Tested in beams
- Robust design: stainless steel tubes

Physics Reach (CKM) in 10^7 s

Reaction	B(B)(x10 ⁻⁶)	# of Events	S/B	Parameter	Error or (Value)
B°→π⁺π⁻	4.5	14,600	3	Asymmetry	0.030
$B_s \rightarrow D_s K^-$	300	7500	7	γ	8°
$B^{\circ} \rightarrow J/\psi K_S J/\psi \rightarrow \ell^{\circ} \ell^{-}$	445	168,000	10	$sin(2\beta)$	0.017
$B_s \rightarrow D_s \pi^-$	3000	59,000	3	X _s	(75)
B ⁻ →D° (K⁺π⁻) K⁻	0.17	170	1		
B ⁻ →D° (K⁺K⁻) K⁻	1.1	1,000	>10	γ	13°
B ⁻ →K _s π ⁻	12.1	4,600	1		< 4° +
B°→ K⁺π⁻	18.8	62,100	20	γ	theory errors
Β °→ρ⁺π⁻	28	5,400	4.1		
$B^{\circ} \rightarrow \rho^{\circ} \pi^{\circ}$	5	780	0.3	α	~4°
$B_s \rightarrow J/\psi \eta,$ $J/\psi \rightarrow \ell^+\ell^-$	330	2,800	15		
$B_s \rightarrow J/\psi \eta'$	670	9,800	30	sin(2χ)	0.024

Endorsements

- Based on our sensitivities, and implementation in 2009 a HEPAP subpanel wrote: "P5 supports the construction of BTeV as an important project in the world-wide quark flavor physics area. Subject to constraints within the HEP budget, we strongly recommend an earlier BTeV construction profile and enhanced CO optics"
- Using identical conditions BTeV was included as a near term priority in the category of "Highest Scientific Importance and Near-term Readiness for Construction," in the "Facilities for the Future of Science: A Twenty-year Outlook" report of the Office of Science.

Kinds of Requirements

- One set of requirements is based on the physics performance we want the detector to provide
- A second set is internal to the detector subsystem of interest and tells how each individual piece needs to perform (i. e. the efficiencies of PM tubes, or noise on electronics)
- Yet a third set is based on safety rules (ES&H)
- I will concentrate on the first set here

Fundamentals

- Luminosity up to 2x10³² cm⁻²s⁻¹
- Mean number of interactions per crossing of 6 (thus allowing for 396 ns bunch spacing)
- Time between bunches < 100 ns (thus allowing for 132 ns bunch spacing)
- Radiation Resistance for at least 10 years on all detector components

High Level Requirements

Charged Tracks

- > Angular acceptance: 10 300 mr
- >p > 3 GeV/c
- > Tracking efficiency > 98%
- > Mass resolution < 50 MeV/c
- > Primary vertex resolution < 100 μm

Trigger efficiency & rejection

- $\succ \epsilon$ > 50 % for all B decays with \geq 2 charged tracks
- $> \epsilon > 20 \%$ for all B decays with 1 charged track
- > Trigger rejection > 98% on light quark events (Level I), and 99.95% at Level III with only a 10% further loss in b efficiency
- Maximum data rate to archival storage < 200 Mbyte/sec

Hadron & Lepton Identification

- π/K separation $\geq 4\sigma$ for momenta 3-70 GeV/c
- p/K separation ≥3σ for momenta 3 70 GeV/c
 - > These allow for π/e & π/μ separation at 4σ level up to ~23 and ~17 GeV/c, respectively
- positive μ identification from 5 100 GeV/c with a fake rate < 10⁻³ and an independent momentum determination with resolution σ_n

$$\frac{\sigma_p}{p} = 19\% \oplus 0.6\% \times p$$

Electromagnetic Calorimeter

- Radius up to 160 cm ~220 mr, with hole for beam ~10 mr
- Range E > 1 GeV

• Energy resolution
$$\frac{\sigma_{\rm E}}{E} < \frac{2\%}{\sqrt{E}} \oplus 1\%$$

Position resolution

$$\sigma_{\rm x} < \frac{4 \text{ mm}}{\sqrt{E}} \oplus 1 \text{mm}$$